Enhancing cellular uptake of GFP via unfolded supercharged protein tags
نویسندگان
چکیده
منابع مشابه
Cellular uptake mechanisms and endosomal trafficking of supercharged proteins.
Supercharged proteins (SCPs) can deliver functional macromolecules into the cytoplasm of mammalian cells more potently than unstructured cationic peptides. Thus far, neither the structural features of SCPs that determine their delivery effectiveness nor their intracellular fate postendocytosis, has been studied. Using a large set of supercharged GFP (scGFP) variants, we found that the level of ...
متن کاملDe novo design of supercharged, unfolded protein polymers, and their assembly into supramolecular aggregates.
Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide units. Subsequently it was demonstrated that the monodisperse protein polyelectrolytes with preci...
متن کاملA Split-Luciferase Reporter Recognizing GFP and mCherry Tags to Facilitate Studies of Protein–Protein Interactions
The use of fluorescently-tagged proteins in microscopy has become routine, and anti-GFP (Green fluorescent protein) affinity matrices are increasingly used in proteomics protocols. However, some protein-protein interactions assays, such as protein complementation assays (PCA), require recloning of each protein as a fusion with the different parts of the complementation system. Here we describe ...
متن کاملVisualizing cellular phosphoinositide pools with GFP-fused protein-modules.
Inositol phospholipids are well known for their pivotal role in calcium signaling as precursors of important second messengers generated in response to various stimuli. However, over the last 10 years, inositides have also emerged as universal signaling components present in virtually every membrane of eukaryotic cells. These lipids are locally produced and degraded by the numerous inositide ki...
متن کاملEthanol Cellular Defense Induce Unfolded Protein Response in Yeast
Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomaterials
سال: 2013
ISSN: 0142-9612
DOI: 10.1016/j.biomaterials.2013.02.038